Computer Adaptive Testing: Comparison of a Probabilistic Network Approach with Item Response Theory
نویسندگان
چکیده
Bayesian and probabilistic networks are claimed to offer powerful approaches to inferring an individual’s knowledge state from evidence of mastery of concepts or skills. A typical application where such tools can be useful is Computer Adaptive Testing (CAT). Bayesian networks have been proposed as an alternative to the traditional Item Response Theory (IRT), which has been the prevalent CAT approach for the last three decades. We review different Bayesian and probabilistic network approaches to modeling student ability assessment and compare the performance of one such approach, a probabilistic network approach named POKS, to the IRT two parameter logistic model. Experimental results over a 34 items UNIX test and a 160 items French language test show that both approaches can classify examinees as master or non master effectively and efficiently. Implications of these results for adaptive testing and student modeling are discussed.
منابع مشابه
Optimal Locating and Sizing of Unified Power Quality Conditioner- phase Angle Control for Reactive Power Compensation in Radial Distribution Network with Wind Generation
In this article, a multi-objective planning is demonstrated for reactive power compensation in radial distribution networks with wind generation via unified power quality conditioner (UPQC). UPQC model, based on phase angle control (PAC), is used. In presented method, optimal locating of UPQC-PAC is done by simultaneous minimizing of objective functions such as: grid power loss, percentage of n...
متن کاملProbabilistic Models for Computerized Adaptive Testing: Experiments
This paper follows previous research we have already performed in the area of Bayesian networks models for CAT. We present models using Item Response Theory (IRT standard CAT method), Bayesian networks, and neural networks. We conducted simulated CAT tests on empirical data. Results of these tests are presented for each model separately and compared.
متن کاملInformation-based Item Selection with Blocking Strategy based on a Bayesian network
With the rapid development of computer technology information theory has been implemented for searching optimal adaptive item sequence in computerised adaptive test systems based on Bayesian network. Information theory such as entropy between dichotomous concepts and test items generalise common intuitions about item comparison for heuristic methodology. However, the executive time and the stor...
متن کاملProbabilistic Models for Computerized Adaptive Testing
In this paper we follow our previous research in the area of Computerized Adaptive Testing (CAT). We present three different methods for CAT. One of them, the item response theory, is a well established method, while the other two, Bayesian and neural networks, are new in the area of educational testing. In the first part of this paper, we present the concept of CAT and its advantages and disad...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کامل